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Abstract The transport of material through a membrane
of finite thickness via the process of diffusion is exam-
ined theoretically. The membrane is assumed to be
sandwiched between a donor and a receptor compart-
ment and it is assumed that infinite source and sink
conditions pertain. The effect of an externally applied
electric field and concurrent first-order chemical reaction
of the diffusant species with sites in the membrane on the
diffusion rate is examined via the formulation of a time-
dependent differential equation and its subsequent so-
lution via the technique of Laplace transformation.
Closed form expressions for the diffusant lag time and
permeability are derived and compared with expressions
previously presented in the literature.

Key words Diffusion - Membranes - Diffusion
equations - Iontophoresis - Active diffusion

Introduction

The analysis of material transport via diffusion in re-
gions of finite spatial extent is a subject of much current
interest. Time-dependent passive diffusion of material
through membranes and thin films has been the subject
of mathematical modelling for many years and reference
may be made to the classic monographs produced by
Carslaw and Jaeger [1] and Crank [2] for a comprehen-
sive survey of progress made in this area. The analysis of
bounded diffusion processes in which the diffusing
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material is also subjected to applied electric fields and
can undergo chemical reaction with sites located in the
diffusion medium is considerably more complicated and
therefore has not received much attention to date.

Attention is focused on bounded diffusion/migration/
reaction (DMR) problems because the latter processes
describe the operation of systems of current technolog-
ical importance, such as electric field assisted ion-
tophoretic drug delivery devices [3] and polymer
modified electrode sensors [4-8]. In the present paper we
discuss the process of diffusion, reaction and migration
through membranes of finite thickness L. Mathematical
modelling of the latter system involves the formulation
of a partial differential equation, a suitable initial con-
dition, and physically reasonable boundary conditions.
The differential equation is then solved to obtain a
closed form expression for the concentration profile of
diffusant as a function of distance and time. The latter
expression may then be manipulated to obtain a closed
form expression for the total quantity of material re-
leased from the membrane at any given time. The latter
expression may then be used to evaluate a theoretical
expression for the normalised lag time 71 of penetrant
species, which defines the time required for the attain-
ment of steady state diffusion conditions, and the nor-
malised permeability p, which is a measure of the steady
state rate of material transport through the membrane
material. Both of the latter quantities can be readily
determined via experiment. In particular, for simple
passive diffusion through a membrane, the lag time f
may be used to obtain an estimate of the diffusion co-
efficient D of the transported species via the expression
1. = L?/6D.

Aspects of material transport in membranes have
been previously discussed in the literature. For instance,
Ludolph and co-workers [9] presented an analysis to
calculate the lag time expected for bounded diffusion
coupled with chemical reaction and sorption of diffusing
species. These workers showed that the lag time for
bounded passive diffusion coupled with reversible
penetrant immobilisation within the membrane is given



by 1, = (L*/6D) (1 + K), where K represents the equi-
librium constant relating free and bound penetrant.
Leypoldt and Gough [10] examined the same system
using finite Fourier transform methods. More recently,
Keister and Kasting [11] modelled electric field enhanced
active diffusion within a finite membrane by a separation
of variables method, and derived an expression for the
lag time. Chen and Rosenberger [12] derived closed form
solutions for the steady state permeability and the lag
time of a linear diffusion system with concurrent reac-
tion and convection using the Laplace transform tech-
nique. In the present paper we present an alternative
analysis of bounded diffusion with concurrent chemical
reaction and electromigration and obtain closed form
expressions for the concentration profile of penetrant,
and total quantity of diffusant exiting the membrane, as
a function of time. The effect of applied electric field and
chemical rate constant on both the lag time and is also
elucidated.

General description of the physical system
and the formulation of the boundary value problem

The mathematical model presented can be used to
analyse the following experimental arrangement. We
consider a thin homogeneous membrane of thickness L
that separates two bulk volumes (Fig. 1). We assume
that the diffusion of penetrant is planar. Hence the
spatial variable is defined over the range 0 < x < L. The
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Fig. 1 Schematic representation of free standing membrane of
finite thickness L, containing immobilised active binding/reaction
sites. The penetrant species passes through the membrane from a
donor to a receptor compartment. A uniform electric field is
present in the membrane, which can facilitate transport of
penetrant
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region x < 0 is designated as the donor compartment
and the region x > L is the receptor compartment. We
also assume that the membrane is subjected to a con-
stant uniform electric field. Furthermore, the diffusing
penetrant reacts within the membrane according to a
first-order kinetic expression with a rate constant k.
Initially, the membrane is devoid of penetrant. At time
t = 0 the face of the membrane adjacent to the donor
compartment is exposed to a constant concentration ¢
while the other face in contact with the receptor com-
partment is maintained at zero concentration. It is also
assumed that the solutions on both sides of the mem-
brane are well stirred, and that the receiver solution acts
as an infinite sink and that the donor solution serves as
an infinite source.

The mathematical description of the problem
involves a time-dependent diffusion equation of the
following type:

u o%u p Ou
ot o dyx
This expression is presented in non-dimensional form.
This is done via definition of the following normalised
parameters:
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where u represents a non-dimensional penetrant con-
centration at any point in the membrane which is scaled
with respect to the concentration ¢, at the donor solu-
tion/membrane interface, y is a normalised distance
variable scaled to the total thickness L of the membrane,
and 7 is a normalised time parameter. Hence we note
that 0 <u <1 and 0 <y < 1. Furthermore, y and f
represent normalised diffusion/reaction and diffusion/
migration parameters, respectively. In fact the diffusion/
reaction parameter y is defined as the ratio of the flux
due to chemical reaction to the flux arising from species
diffusion through the membrane. In a similar way,
the parameter f§ defines the ratio of the migration flux to
the diffusion flux and compares the magnitudes of the
transport rate of penetrant through the membrane via
migration and diffusion, respectively. Consequently, the
ratio y/f compares the rate of penetrant species reaction
at a site in the membrane to the rate of electromigration
of penetrant species within the membrane. The param-
eter f depends directly on both the electric field strength
E within the membrane and on the ionic mobility u of
the penetrant species. It also depends on the membrane
thickness and is inversely proportional to the diffusion
coefficient D of the penetrant. In contrast, the parameter
y is directly proportional to the first-order rate constant
for species removal within the membrane and is in-
versely proportional to the diffusion coefficient D. The
effect of species partitioning at the donor solution/
membrane interface is quantified via the partition coef-
ficient k. The latter parameter accounts for the conti-
nuity of the diffusant’s chemical potential at the



460

interface. The expression presented in Eq. 1 should be
compared with the equation governing simple passive
diffusion within the membrane, which is well described
by the time-dependent Fick diffusion equation:

_ o
ot 0y

The problem is defined mathematically in terms of the
following initial and boundary conditions:

u(y, 0)=0  u(0, 7) =1 u(l, 1) =0 4)

We shall initially present a solution of the simple passive
diffusion problem governed by Eq. 3 and then outline
how the more complex situation of diffusion coupled
with concurrent electromigration and chemical reaction,
which is governed by the differential equation presented
in Eq. 1, is tackled. In both cases we utilise the technique
of Laplace transformation, which is the solution tech-
nique of choice when bounded diffusion problems are
examined.

(3)

Passive diffusion in a finite membrane

We initially indicate the manner in which the Fick dif-
fusion equation (Eq. 3) is solved subject to the initial
and boundary conditions presented in Eq. 4. The diffu-
sion flux at the membrane/receptor compartment inter-
face corresponding to y = 1 is given by:

) Dxcy <6u>
j=- ~ (5)
L \%r/),-
and the normalised diffusion flux  is given by:
_JL _ (ou
V= Dkcy (6)() =1 (6)

We take Laplace transforms of Eq. 3 to obtain the fol-
lowing ordinary differential equation:

dka

dT(z —pu=0 (7)
where p denotes the Laplace parameter and # represents
the concentration of penetrant in Laplace space. Equa-
tion 7 is subject to the following transformed boundary
conditions:

#(0, p) :}, a(l, p) = 0 (8)

As outlined in Appendix A, the solution of Eq. 7 is given
by:

cosh[\/py] sinh[\/py] _ sinh [vp(1 = 2)]
ptanh/p psinh /p

u(y, p) =
)

We use the complex inversion theorem to obtain the
inverse Laplace transform and invert Eq.9 (see
Appendix A) to obtain the following expression for the
normalised concentration profile:

u(y, 1) =1—y— 2Z$’;ﬂﬂexp[7n2nzr}

; (10)

n=1

Typical diffusant concentration profiles through the
membrane obtained using Eq. 10 are presented in Fig. 2.
We can use Eqs. 6 and 10 to obtain the following

expression for the diffusion flux at the membrane/re-
ceptor compartment interface:

o)
Y(r) =1 +22(—1)" exp[—n’n’t] (11)

n=1
The total quantity N(7) of penetrant passing through the
membrane after a time ¢ is given by:

t

N(t) = 4 / J(de

0

(12)

where A is the membrane surface area. Since dr = L?/D
dz, then using Eq. 6 we can readily show that:

N(7) :Nm/lﬁ(r)dr (13)
0

where the total quantity of material released into the
receptor compartment at very long times is given by
Ny, = ALkcy. The ratio Q(t) = N(1)/Ns versus t de-
fines the quantity of primary experimental interest.

From Eqgs. 11 and 13 we can show (Appendix A)
that:
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Fig. 2 Typical concentration profiles computed using Eq. 10 for
simple passive diffusion through a membrane of finite thickness. The
concentration profiles are presented for normalised times (from left to
right) of 1 x 1074, 1 x 107, 1 x 1072, 0.1 and 0.6 respectively
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Fig. 3 Variation of quantity of penetrant delivered to the receptor
compartment as a function of normalised time. The curve was
computed using Eq. 14

Ot) =1~ é -2 i 1) exp[—n*n’t]

n2m?

(14)

n=1

and we can identify the normalised lag time as tL = 1/6.
A typical release profile is presented in Fig. 3.

We can obtain useful limiting expressions for the
normalised release function Q(z) in the limit of short and
long times 7. We return to Eq. 9 and note:

i = p'cosechy/psinh[\/p(1 — 7)] (15)

Now short times correspond to 7 < 1 and to p> 1.
Under such conditions we note that: cosech,/p =
2exp[—y/p]. Also (du/dy),_,=—p'? cosechy/p =
—2p~ "% exp [—/P]. and so the normalised release profile
is given by:

o= {1 (8) - {r ) )

(16)

where L™! represents the inverse Laplace transformation
operator and we have used the fact that integration with
respect to time 7 is equivalent to division by the Laplace
parameter p. Hence the diffusant release profile at short
times is obtained via inverting the expression:

O(t) = 2L7! {p’3/2 exp [—\/ﬁ]}
We note that [13]:

G o] 2] o

— 2% jerfc [2%/4

(17)

(18)
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where o > 0. If we set & = 1 we obtain:

O(r) = 4ﬁ1erfc[ (19)

-
where we note that ierfc denotes the complementary
error function integral which is defined as [14]:

=7 / — x) exp[—07]d0 = /Oc erfe[0]d0

= /(1 — erf[0])d0

X
where 6 is a dummy integration variable and erf [x]
represents the well-known error function. It can be
shown [14] that the following asymptotic expansion is
useful when the argument of the repeated integral of the
complementary error function is large:

ierfc[x

(20)

2exp[—x?] & (—1) (n 4 2j)!
VR = (207

Specifically for n =1 and setting n = 1/2,/7 we obtain
forn>1(or 1< 1):

2exp|[—n’]

(2n)*V/x
and so an expression for the release profile valid for
short times is given by:

f2epltja) 8 i [T
4*[{ ﬁ(l/ﬁf} e

This expression is valid up to 7 =2 0.02 (error 10%). For
7= 0.1 there is a 50% error in using Eq. 23 to estimate
the quantity of diffusant released from the membrane.
The full expression must be used for t values greater
than 0.02.
Conversely, for long times when p <1 we use
the fact that cosech\/_ ~ 1A/p — /P/6 to obtain
P *cosechy/p = 1/p> —1/6p and when the latter is
substltuted in Eq. 16 we obtain:

i"erfe[x] = (21)

112

ierfe[y] (22)

O(1) =

Q(r)%r—é:f—q (24)

The latter expression, valid at long times, is used ex-
perimentally to evaluate the lag time 71 and hence the
diffusion coefficient Dg of the penetrant through the
membrane. Now the permeability in normalised form is
defined as:

_LP_(do
kD \dt)_.

Hence from Eq. 24 we note that p = 1, as expected for a
system exhibiting simple passive diffusion. Furthermore,
the normalised lag time is:

Dt 1

¢ (26)

(25)

L =



462

Hence the lag time for passive diffusion through a
membrane of thickness L is predicted to be #;, = L2/6D,
as is well known.

Electric field assisted diffusion with concurrent
first-order chemical reaction in a finite membrane

We now present a solution of Eq. 1 which describes
electric field assisted diffusion with concurrent first-order
reaction kinetics in a finite membrane. Such a situation
would typically correspond to iontophoretic transport of
charged drug species across a membrane barrier in
which the drug can be metabolised via first-order ki-
netics. The analysis could also be used to describe sub-
strate transport and reaction within a free-standing
electronically conducting polymer membrane in which
the diffusing substrate reacts with sites located on the
polymer chains via first-order kinetics.

We apply the Laplace transform to Eq. 1 to obtain:

'z du
- - YT — 0
a2 B a (p+7)u
This ordinary differential equation with constant coef-
ficients is solved using the Laplace transformed bound-
ary conditions presented in Eq. 8. The general solution
to Eq. 27 is:

(27)

u(y,p) = eXp[éx]{A cosh[ ¢ +px}

+ Bsinh [+ ]} (28)
where we note that:
_B _ B
E=5  =y+&=y+5 (29)

and 4 and B are integration constants which are eval-
uated from the boundary conditions presented in Eq. 8.
As outlined in Appendix B, we can show readily that:

sinh [/ + p(1 —x)]}
psinh \/(+p

When the diffusion is passive, ¢ = 0 = 0, and if there is no
loss of penetrant via first-order chemical reaction then
{ =0 and we note immediately that Eq. 30 reduces di-
rectly to Eq. 9 which we have previously examined. The
Laplace transform presented in Eq. 30 may be inverted
using the Heaviside expansion theorem [15] or via the
complex inversion formula [16]. In Appendix B we use the
former strategy to show that the normalised penetrant
concentration profile within the membrane is given by:

u(y,p) = exp[fx]{ (30)

u(y,©) = us(x) —ur(x:7) (31)

where ug represents the steady state component and ur is
the transient contribution to the concentration profile.
The latter quantities are given by:

_sinh [VE(1 - )]

sinh v/
) sinh [\/Hg(l - x)} exp{&]
sinh {\/erﬁﬂ 2

exp|[¢y]

(32)

and
> nm

ur(y,7) = 2exp[¢y] ————sin[nmy|
; n27'c2 + C

x expl— (x> + 0)1]

= 2exp [&] L ™
2 e

i
X exp [— (n2n2 +7y+ Z) r}

We can readily show that the expressions presented in
Eqgs. 32 and 33 reduce to that outlined in Eq. 10 when
the parameters § and y are both zero and simple passive
diffusion pertains. Typical normalised concentration
profiles for penetrant are presented in Fig. 4 for typical
values of the migration parameter § and the reaction/
diffusion parameter y. These profiles are presented in a
three-dimensional format for ease of representation. For
instance, in Fig. 4a we show how the normalised con-
centration profile u varies with f§ at different values of

sin[nmy]

(33)
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normalised time t ranging from 7 = 0.01 to steady
state when the reaction/diffusion parameter 7y is zero. In
Fig. 4b, concentration profiles are presented for various
p and t values, but in this case y = 1. The same com-
putation is repeated in Fig. 4c, 4d and 4e but in this case
y =10, 100 and 1000, respectively. A further set of
concentration profiles is presented in Fig. 5. In this case
the effect of the sign and magnitude of the migration
parameter f§ on the shape of the (u, y, y) surface is ex-
plored. In Fig. 5a the effect of a negative f value on the

1000

steady state

Fig. 5a—c Development of the (u, y, y) surface as a function both of
normalised time 7 and migration parameter iz a f = —10;b = 0; ¢
p=10

(u, x, y) surface is presented. Here the field opposes the
migration of penetrant through the membrane. In
Fig. 5b, f =0 and the time development of, and the
effect of the reaction/diffusion parameter y on, the (u, ¥,
y) surface is clearly presented. In Fig. 5c the time vari-
ation of the (u, y, 7) surface when f§ = 10 is presented.
Here the field enhances penetrant transport through the
membrane.

In Appendix C we show that Eq. | may be integrated
to obtain an analytical expression for the concentration
profile of penetrant if a solution of the following form is
assumed:

u(y, ) = exp[y] exp[—{t]w(y, 1) (34)

where w(y, 7) satisfies the simple Fick diffusion equation:

oo w
g 35
ot 0y? (35)
and also satisfies the following initial and boundary
conditions:

o(y,0) =0 (0,7) = exp|{1] o(l,7)=0  (36)

where we define: ¢ = /2 and { =7y + &, This alterna-
tive strategy can prove to be very useful when other
types of bounded diffusion problems in membranes are
considered.

As outlined in Appendix B, we can show that the
normalised release profile of penetrant from the mem-
brane as a function of time is given by:



0(z) = /L exp|¢]cosech [\/Zr}r

+ 2expl¢] i Ve

n=1 (n2n2 + C)z
Cex X (—1)"'n*n?

2e P[ﬂ ; (’127[2 T C)Z
x exp[—(n*n* + {)1] (37)

We follow Leypoldt and Gough [10] and note that
complex variables theory (specifically the method of
contour integration) may be used to express the fol-
lowing infinite series in terms of a closed form expression
involving hyperbolic functions:

i (—1)'n*n?
= (i + )
=— % {cosech \/Z(coth \/Z — \}Z> }

and so the normalised release profile of penetrant be-
comes:

O(r) = \/Zexp[f]cosech[\/zr}r
1 1
- Eexp[éﬂcosech\/z{coth V- ﬁ}

X (—1)"'n*n?
s

x exp[—(n*n* + {)1]

(38)

(39)

In the limit of long time the last term of Eq. 39 reduces
to zero and we obtain that:

O(t — o0) = /L exp|¢]cosech/{
1 3 1
- Eexp[g}cosech\/f{coth\/_ - W} (40)

The normalised permeability may immediately be eval-
uated from the latter expression and is given by:

d
p= (d—?> = /Cexp[¢]cosechy/T
We also note that Eq. 40 can be written in the form:

Ot — o0) = p(L, &)t — p(L, E)rL(l) (42)

and so the normalised lag time for electric field assisted
diffusion with concurrent first-order chemical reaction is
given by:

(41)

ww(0) (43)

1 1 1
=5z {eomvi- Jaf =0

where L(x) is the well-known Langevin function which
is given by:
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L(x) = cothx — )lc (44)
Equation 43 may also be written in another way:

1(3 3
w0 =g{ Zt (D)} =n0{ (D)} @)

where 71 (0) denotes the normalised lag time for passive
diffusion. Equations 41 and 45 may be used to examine
the way in which the permeability and the lag time vary
with the diffusion/migration parameter § and the diffu-
sion reaction parameter y. When the { parameter is small
we note that cothvl= (1/V0){1+{(/3} and
(3/VT)L(VT) = 1 and we obtain that 7 ({) = t1.(0), as
one would expect. Also since cosechy/{ = 1/y/{ and
exp[é]=1 + ¢ for small values of { and &, then from
Eq. 41 we note that the normalised permeability p re-
duces to p=1 + £=1, as indeed it should.

For the specific case of active diffusion or iontopho-
resis corresponding to y = 0, the pertinent expressions
for the permeability and lag time are given by:

_ B |B i B _JE
p(p) = SExp {5] cosech {5} ==

T T—exp[-f] e
() = rL<0>{%L(§)}

-noft (ol -3}

The first expression in Eq. 46 provides an analytical
expression for the degree of current or flux enhancement
at the membrane receptor interface owing to iontopho-
resis under steady state conditions. The second expres-
sion in Eq. 46 indicates how the normalised lag time
varies with migration parameter f'. The expressions
provided in Eq. 46 are represented graphically in Fig. 6.
In Fig. 6a the current enhancement factor is plotted as a
function of the migration parameter . The same func-
tion is displayed in semi-logarithmic format in Fig. 6b.
Now f = uEL/D = zFAV/RT, where AV denotes the
applied potential difference across the membrane and z
is the valence of the diffusing species. Hence from
Fig. 6a we note that the enhancement ratio, or the ratio
of steady state flux with applied voltage to the steady
state passive diffusion flux, is an asymmetric function of
the applied voltage AV. For large positive f§ values the
enhancement factor is a linear function of 5. For nega-
tive values of ff when the applied voltage inhibits the
flow of charged species through the membrane the en-

(40)

' Following a query expressed by one of the referees, we can readily
show how the expression for the normalised lag time reduces to the
value 7;. = 1/6 in the limit as f# — 0. To achieve this aim we use the
fact that coth x = (1/x) + (x/3) when the parameter x is small.
Hence in the limit of small f we note that Eq. 46 reduces to

w =058 (G+4) -2} =m0 -

where we have used the result obtained in Eq. 26.
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Fig. 6 a Variation of flux enhancement parameter p with migration
parameter f. b The same data expressed in semi-logarithmic format.
The curves in both cases were computed using Eq. 46. ¢ Variation of
the ratio of the penetrant lag time in the presence of a field 7y () with
that due to simple passive diffusion 7 (0) with migration parameter f.
The curves were computed using Eq. 46. Note that the lag time ratio
function exhibits symmetry with respect to the migration parameter.
The symmetry is maintained regardless of the value of the reaction/
diffusion parameter adopted

hancement factor is a rapidly decreasing function of f§
(Fig. 6b). Typically for f=-10, p=4.54x107* or
Ji = 4.54 x 107 jp. The species flow is therefore strongly
inhibited. As noted from Fig. 6c, the ratio 7y (f)/7.(0) is
a symmetric function of the  parameter. The lag time
for active diffusion relative to that observed for passive
diffusion is reduced with increasing positive values of f5.

However, owing to the symmetry of the function 7y (f)/
71.(0) the lag time is also reduced for increasingly more
negative values of the § parameter. Keister and Kasting
[7] have also made a similar observation. It is interesting
to note that Chen and Rosenberger [8] have determined
that the symmetry exhibited by the lag time expression
arises mathematically from the symmetry with respect to
the exchange of coordinate variables exhibited by the
corresponding Green’s function for the general diffusive/
convective boundary value problem. The latter obser-
vation does not shed additional physical insight, how-
ever. This result may be explained physically as follows?.
The lag time indicates how quickly the steady state
condition within the membrane is established, i.e. how
quickly the flux at y = 1 becomes constant. A zero lag
time indicates that the steady state is immediately es-
tablished. It should be noted that the lag time is inde-
pendent of the flux itself. Both very small and very big
fluxes can correspond to the same numerical value of the
lag time. This fact can be noted from Figs. 4 and 5. Now
if the parameter f§ < 0 the electric field acts against the
diffusional transport and the net flux will be small, but
the steady state concentration profile appears for
7 =0.01 (Figs. 4a and 5a). If the parameter f > 0, the
electric field enhances the flux, but on the other side of
the membrane it creates a very low concentration gra-
dient for normalised distances less than 0.4 (Fig. 4a),
which controls the flux. So again the steady state con-
dition is established more rapidly than that pertaining
for f =0 (Fig. 4a, T = 0.1).

The results presented in Eq. 46 derived from the more
general expressions presented in Egs. 41 and 45 are in
exact agreement with those previously published by
Keister and Kasting [11], who examined iontophoretic
drug transport through a finite membrane via solution
of the diffusion/migration equation by means of the
separation of variables technique.

For the specific case of passive diffusion coupled with
concurrent first-order chemical reaction corresponding
to the situation of =0, the normalised permeability
and lag time are given by the following expressions:

p() = 7 cosechy7
o) =5z feorh 7 - %}
B )

When 7 is small, then noting that cosech,/y = 1/,/7 and
coth /7 = (1//7) + (v/7/3), we can readily show that
p(y) > 1 and 71(y) — 7(0). Conversely, when 7y is
large, then cosech,/7 = 2exp[—,/7] and coth /7 = 1+
2exp|—y/7] and therefore:

p(y) = 2¢/yexp[—/7] — 0

(47)

(48)

2 The authors are very grateful to one of the referees for helping us
to understand this observation.
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Fig. 7 Variation of flux enhancement factor p with reaction/diffusion
parameter y. The curves are generated via Eq. 47, and =0 is
assumed. The data are presented both in linear and semi-logarithmic
format for clarity

~ 310 {1 _ i} (49)
V7 4

Hence we expect that the normalised permeability and
the lag time decrease rapidly with increasing values of vy
when the latter parameter is large. This contention is
supported by the computations presented in Figs. 7 and
8. We note from Fig. 7 that if a semi-logarithmic scale is
used, the normalised permeability exhibits only a small
decrease with increasing y up to a value close to 0.5. It
then decreases quite rapidly with increasing values of the
reaction/diffusion parameter. A similar behaviour is
observed for the normalised lag time (Fig. 8).

The general situation corresponding to finite values of
p and 7y is described by Egs. 41 and 45. In Fig. 9 we
indicate the manner in which the normalised permeabil-
ity p varies with the migration parameter f§ for various
values of the reaction/diffusion parameter y. When the
reaction/diffusion parameter is small, then p varies lin-
early with 5. Hence we observe a marked enhancement in
steady state flux with increasing value of electric field.
When y becomes significant the p versus f behaviour
changes. We note from Fig. 9 that p still increases with
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Fig. 8 Variation of normalised lag time ratio with reaction/diffusion
parameter y. The curves are generated via Eq.47 and f=0 is
assumed. The data are presented both in linear and semi-logarithmic
format for clarity

increasing f3, but when y is significant the strictly linear
increase is not observed for all values of 5. Indeed, for f8
values in the range 0.01-1, p can be less than unity if y is
finite. Hence if the electric field is small and the concur-
rent chemical reaction is operative, then the steady state
flux of penetrant can be less than that observed for simple
passive diffusion in the absence of electric fields and
chemical reaction. Penetrant flux enhancement is only
observed for f values greater than 1, and indeed the
operation of a chemical reaction within the membrane
reduces the enhancing effect of the electric field on the
transport rate of penetrant species. This statement can be
noted more readily from Fig. 10, where we show the
variation of p with v for different f values. We see from
this figure that p decreases smoothly with increasing y
value for all values of § examined, but the disenhancing
effect of y on p is not as marked for f values.

The variation of lag time with ff and y given by Eq. 45
is illustrated in Figs. 11 and 12. Here the computational
datum is the ratio of the normalised lag time for finite f8
and y to that expected for simple passive diffusion. In
Fig. 11 we indicate how the latter quantity varies with
migration parameter 5 for given values of the reaction/
diffusion parameter y. The lag time decreases significantly
with increasing f value for all values of y examined, al-
though the rate of decrease is not as marked when v is
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Fig. 9 Variation of flux enhancement factor p with migration
parameter f for various fixed values of the reaction/diffusion
parameter y. The curves were computed using Eq. 41 for various g
values in the range 0.01-100. The data are presented both in linear
and semi-logarithmic format for clarity

large. Furthermore, any effect that y has on the lag time
ratio is not resolvable for f values greater than 70. In
Fig. 12 we indicate the manner in which the lag time ratio
varies with y for various f values. Again the lag time ratio
decreases with increasing y value for small to intermedi-
ate f§ values, but when f§ becomes significant (> 20) very
little variation in lag time ratio with y is observed.

Concluding comments

In the initial sections of the paper we have examined
passive diffusion through a membrane of finite thickness
and derived, via Laplace transform analysis of the time-
dependent Fick diffusion equation, closed form analyt-
ical solutions for the concentration profile of penetrant
through the membrane as a function of time, and for
the amount of penetrant released into a receptor com-
partment as a function of time. From the latter expres-
sion the lag time and penetrant permeability can be
derived.

In the second part of the paper we have shown that
the technique of Laplace transformation provides a
useful protocol for the solution of material transport
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Fig. 10 Variation of flux enhancement factor p with reaction/
diffusion parameter y for various fixed values of the migration
parameter 5. The curves were computed using Eq. 41 for various f§
values in the range 0.1-100. The data are presented both in linear and
semi-logarithmic format for clarity

problems in finite membranes in which diffusion, mi-
gration and concurrent first-order chemical kinetics are
considered. The variation of the substrate permeability
and lag time with both reaction/diffusion parameter and
migration/diffusion parameter is computed via analyti-
cal solution of the diffusion/reaction/migration equation
to obtain closed form expressions. The latter expressions
are used to compute dimensionless working curves for
the steady state permeability and the lag time which can
be compared with experimental data.

Appendix A

The general solution to Eq. 7 is given by:

u(y, p) = Asinh|\/py| + Bcosh|\/py/ (AD)

Note that we choose hyperbolic functions since the diffusion space
is finite and lies in the range (0, 1).When y =0, u = 1/p and so
B =1/p. Alsowhen y =1, u =0andso4 = —1/p tanh/p. Hence
substitution of these quantities into Eq. 7 immediately produces:

1 . cosh/psinh|\/py]

U= ;cosh[\/ﬁg] T psmhyp
1 fsinh/pcosh[,/py] — cosh /psinh[,/py]
“p sinh \/p
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1 fsinhly/p(1 — )]
p sinh \/p
which results in Eq. 9 of the paper.
We now use the complex inversion formula to invert Eq. 9. We
recall that if y(p) represents the Laplace transform of a function

(1), then according to the complex inversion formula we can state
that:

y(r) =

(A2)

c+ioco

| explprlv(p)dp = - fexplprly(p)dp

c—ioo

A3

o (A3)
where the integration in Eq. A3 is to be performed along a line
p = c in the complex plane where p = x+1iy. The real number c¢ is
chosen such that p = ¢ lies to the right of all the singularities, but is
otherwise assumed to be arbitrary. In practice, however, the inte-
gral is evaluated by considering the contour integral presented on
the r.h.s. of Eq. A3, which is evaluated using the so-called Brom-
wich contour. The contour integral is then evaluated using the
residue theorem which states for any analytic function F(z):
§F(z)dz = 2mi)y_ Res[F(z)],_, (A4)
C n

where the residues are computed at the poles of the function F(z).
Hence from Eq. A3 we note that:

(1) = L Reslexplptlp(p)],—,

From the theory of complex variables we can show that the residue
of a function F(z) at a simple pole at z = a is given by:

(A5)
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Res|F(2)],_, = Lim{(z - a)F ()} (A6)
z—a
Hence in order to invert Eq.9, we need to evaluate

Res [sinh[\/py |/p sinh,/p| at the poles. Note that we have set

=1-y Now the poles are obtained from p sinh,/p=0.
Hence there is a simple pole at p =0 (this will ultimately pro-
duce the steady state contribution to the concentration profile)
and there are infinitely many poles given by the solution of the
equation sinh/p, =0 and so p, = —n*n® with n=1,2,3, These
will ultimately produce the transient contribution to the con-
centration profile. Hence we note that:

u(y,7) = Res th[\/ﬁm +Res 7sinh[\/ﬁ;(’]
. psinh \/p =0 psinh \/p e

= Lim(p - 0){ xplpt ]iZ?IE(\;(_]}

)

The following Taylor series expansions of the hyperbolic terms are
useful:

+ Lin(p ~ p){exolpr (A7)

sinh[\/py/] _ /L + (VBL) /3! + -

sinh/p \/l_7+(\/1_?)3/3!+"’
_ A pB
BNEY R

Using this expansion we note that the first residue in Eq. A7 is
given by:

(A8)
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b p
Res {75111. LV q
psinhy/p|
7 A /3

:I;Lrg{e"pb”ﬂ( T+p/3l+ )} =%

The second residue in Eq. A7 can be evaluated as follows. It is
established that if F(z) can be expressed as F(z) = f(z)/g(z), where

the functions f'and g are analytic at p = p, and g(p,) = 0 while
g@) #0 and fip,) # 0, then Res[F(z)],_, =>"2, é((’; exp[pat]-
Consequently from Eq. A7 we set f(p,) = sinh [\/p—n)( ]/Pn and
g(p») = sinh \/g,. Noting that p, = —n’n’ then g'(p,) = (1/2nni)

(A9)

cosh[nmi] = coslnn|/2nmi = (—1)"/2nmi #0. Also f(p,) = sinh
[\/ﬂﬂnzx’] J(—nm?) = sinhfinny])  (—n?nd) =isin  [amy]/
(—n?n?). Hence we can show that:
o {sinh[\/ﬁx’]}
psinh\/ﬁ vep
22 (=" . / 2 2
= > ~—~sin[nmy'] exp[—n-n1] (A10)
n=1
and the concentration profile is given by:
x 1

u(y,t)=1—-y-2> Esin[nmd exp[—n’n’1] (All)

n=1

which is Eq. 10 in the text. In arriving at the result in Eq. A11 we
have noted that sin[nny’] = sin[nn(l — )] = —(=1)"sin[nry]. Note
that the transient contribution to the concentration profile sub-
tracts from the steady state contribution, as it should.

We now indicate the manner in which Eq. 14 of the paper is
obtained. Using Eqs. 11 and 13 we obtain:

Ot) = /{1 + 22(71)" exp[n2n21]}dr (A12)
0 n=1

This expression simplifies to:

ot)y=1t+ Z Z exp —n?n?1] (A13)

We recall that 7?/12 = -2, (=1)"/n*. Hence using the latter

identity we note that Eq. A13 reduces to Eq. 14 of the paper, as
desired.

We note that the solution of the simple Fick diffusion expres-
sion presented in Eq. 3 of the paper can also be solved without
using the complex inversion formula®. We begin with the Laplaced
transformed diffusion equation presented in Eq. 7 and state that
the latter expression admits the following solution:

u = K expl/py] + Ky exp|—/py] (A14)
where

1 1
f 7_5{exp[2\/17]—1} (A15)

1
K =-—Ki
P

Substituting Eq. A15 into Eq. Al4, simplifying and noting that

1

_ Al
1 —exp[— (A16)

Z exp[—2n,/p|

3 Again we wish to convey our thanks to one of the referees for
pointing out this method of approach.

we can show that Eq. A14 reduces to

a o $oels zn+x>m

n=0

iexp[ (2(n+1) = 1)\/P] (A17)

p

n=!

This expression can be readily inverted to yield the normalised
concentration profile by noting that for k£ > 0:

k
L {e"p[ \”} fc{ K } (A18)
p 2V
Applying the latter identity to Eq. A17 results in
= 2n+y - 2(n+1) —
u= E erfc { } ,;:0 erfc {27\/? (A19)

We compare the concentration profile predicted by Eq. A19 with
that presented in Eq. A1l in Fig. 13a. It is clear from this figure
that the expression in Eq. A19 involving the difference of two in-
finite series involving error function complement terms is com-
pletely equivalent to that presented in Eq. A1l for all values of the
normalised time parameter 7.

We can differentiate Eq. A14 with respect to normalised dis-
tance to obtain an expression for the transient normalised flux in

Laplace space:
i (au) __ 2ewl-ypl
1) =1 \/f){l — exp[fZ\/ﬁ]}

=2p '/ZZexp

where we have used Eq. A16 in the analysis. The expression in
Eq. A20 may be readily inverted by noting that

2n+1)yp) (A20)

k2
L ek} = () Pexp |- | (A21)
T
Hence we note that the transient diffusion flux is given by
2 & 2n+1)
Y=—=) exp [ - (A22)
VT HZ; 47

In Fig. 13b we compare Eq. A22 with Eq. 11 previously presented
in the paper. We note that both expressions are totally equivalent.

We finally note that in Laplace space the normalised amount
released into the receptor compartment is given by

Q:L{}t//dr} :%:Zip’3/2exp[—(2n+ 1)/p] (A23)
0

We immediately note that

L {p-3/2 exp[—k\/ﬁ]} - 2\/% exp [— ;‘—j ~ k erfe {%} (A24)

Hence in real space the total quantity of material released into the
receptor compartment at any time t is given by

—22(2n+1 erfc{ }1}

_4\/’2 [2n+)

In Fig. 13c we compare Eq. A25 with Eq. 14 presented in the body
of the paper. We note that both expressions produce exactly
equivalent results. However, unlike Eq. 14, Eq. A25 does not im-
mediately produce a term for the normalised lag time.

(A25)
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Fig. 13 a Typical concentration profiles computed using Eq. 10
(dashed line) and Eq. A19 (discrete crosses) for simple passive diffusion
in a finite membrane. Values for the normalised time 7 utilised in the
computations are 1 x 107 (botrom curve), 1 x 107, 1 x 1072, 0.1 and
1.0 (top curve). b Variation of normalised diffusion flux y with
normalised time 7. The dashed curve corresponds to Eq. 11 and
discrete crosses represent Eq. A22. ¢ Variation of normalised release
function Q with normalised time 7. The dashed curve corresponds to
Eq. 14 and discrete crosses represent Eq. A25

Appendix B

In this Appendix we indicate how Eq. 30 in the paper is derived.
We begin with Eq. 28 and evaluate the constants 4 and B. When
7 =1, u=0 and so from Eq. 28 we note that:

A = —Btanh [\/M]

Also when y =0, u=1/p and so

(BI)
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1
A=- B2
> (B2)
From Egs. Bl and B2 we get:
1
(B3)

~ ptanh [V +p]

Hence the normalised concentration profile in Laplace space is
given by:

“(LP)—exp[fX]{COSh[ {+py] sinh] gﬂ,ﬂ}

P ptanh./{+p

—explé] cosh[+/C+py|sinh\/{+p—sinh [\/{+py]cosh\/{+p
—pleL psinh@

sinh [/{+p(1-y)]
=exp[éy]{————F—
psinh\/{+p
which is Eq. 30 of the paper.

We now indicate how Eq. B4 may be inverted using the
Heaviside expansion theorem. We firstly set ¢* = p 4+ { and hence
sinh[/C+ p(1 — )] /psinh V/{+p=sinh[¢(1 — y)]/psinh ¢.
Now the Heaviside expansion theorem states that if we can express
a Laplace transform as y(p) = f(p)/g(p) and if we can set

gp)=@-o)p—om) - (p—o,) where oy, k = 1,2,3... are
constants then the inverse Laplace transform is given by:

Z

We need to evaluate the zero’s of psinh ¢ = 0. Clearly, p =0 is a
zero and the others are given by sinh ¢, = —1s1n[1d) |= 0 Hence
sinfi¢,] = 0 or ¢, 1!’!7‘[)’1—123NOWp,,—¢n*§_ -L

Thus we have our roots. We can readily show that 4 a {psmh ¢} =

smhd)+pcosh¢ . Since ¢ = /{+p, then d—i’—z l,+ 2‘¢.

(+p
Hence - d {p sinh d)} = sinh ¢, + p, cosh ¢, 51 35~ We can obtain an
expressmn for the concentration profile by considering each root in
turn, p = 0 and p = p,, and using the Heaviside expansion formula
presented in Eq. BS.

The term for p = 0 gives the steady state concentration profile.
Here ¢ = /T and so:

sinh [\/_(l — y)}}
sinh v/

which is Eq. 32 of the paper. The transient contribution to the
concentration profile is given by:

(B4)

exp[oc;\r (BS)

g(oC

us(y) = eXp[éx]{ (B6)

ur (Xv T)

= exp[¢y]

i sinh[\/C+ pa(1 — )]
n=1 (sinh[ {4 pa]+ \/—cosh[\/Cern )

X eXp[pnt] (B7)

where p, = —n*n® — { = —n*n? —y — */4. We readily show that
sinh \/C+p,, = sinh[inn] = isin[nn] = 0. Also Pn/2+/C+ pn

= (—n*n?® — {)/2int and we note that cosh \/{ + p, = cosh[inn] =
cos[nn] = (—1)". We finally note that sinh[\/{+p,(1—y)] =
isin[nn(l — )] = —i(—1)" sin[nmy]. If we substitute the latter iden-
tities into Eq. B7 we obtain:
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ur(y,7) = —2exp|[&y] i%

— nPr? +{
x exp[—(n*n* + {)1] (B8)

which is Eq. 33 in the paper.
We now indicate how Eq. 37 is derived. The normalised release
profile is given by:

@) = - / (5) e

We differentiate Eq. B6 and set y = 1 to obtain:

(dus> =- Cexp[é]cosech\/z
7=1

dy

(B9)

(B10)
Similarly, from Eq. B8 we can show that

dut o om (— )2

-T -2 J "

(dx)le exp[¢] Z w2l {

x exp[—(n*n* + {)1]
Hence using Eq. B9 we obtain

(BI1)

= / V/Cexplé]cosechy/C dt

1122

n2 2 g exp[—(n’n* + {)1]dr

¢ exp[¢]cosechy/Ct

)'n2n?

_2expflz o 2+C)

which is Eq. 37 of the paper.

xp[—(n'7* + ()] (B12)

Appendix C

In this Appendix we discuss the use of the substitution presented in
Eq. 34 of the paper as an alternative way of solving the RDM
boundary value problem. We begin with Eq. 34 of the paper:

u(y,7) = exp[&y] exp[-{f]o(y, 7) (€
and propose that @ obeys the simple Fick diffusion equation:

do w

- 2
ot 0y (©2)

Now the initial and boundary conditions for the u function are
u(y,0) =0, u(0,7) =1, u(1,7) = 0. Utilising the latter conditions
and substitution into Eq. C1 immediately yields that w satisfies the
following initial and boundary conditions:

o(y,0)=0 (0,7) = exp|{1] o(l,7) =0 (C3)
We now take Laplace transforms of Eq. C2 to obtain:
&P
Fﬁ —po=0 (C4)
and the boundary conditions transform as
1

(0,p) =—— o(l,p) =0 C5

(0,p) =T (Lp) (Cs5)

The solution to Eq. C4 has the form:

@ = Acosh[\/py] + Bsinh[,/py] (Ce6)
Now when y = 1, @ =0 and so 4 = —Btanh,/p. Also when y = 0,
o=-1/(p—¢ and so A4=1/(p—{). Hence B=-1/
(p — {) tanh ,/p. Substituting the latter results into Eq. C6 yields:
— cosh[,/py] _sinh [vPx]
p—C  (p-Otanhp
~ cosh[y/py] sinh \/p — sinh[\/py] cosh \/p
N (p—{)sinh /p
inh 1 -
_ sin [\{ﬁ( y)] it
(p—{)sinh /p
which must be inverted. This can be done using tables of inverse
Laplace transforms to obtain:

sinh[\/_(l — y)}
sinh \/_

Jr2322

Substituting this result into Eq. C1 affords:

sinh[vZ(1 = y)]
sinh /¢

+2enlen 3 S

o(y,1) = exp[(7]

sm[nn(l — p)] exp[—n*n’1] (C8)

u(y,t) = exp(¢y]

nz 2 T sm[mr(l =)
X exp[— (n2n2 + )1 (C9)
which is equivalent to Eqgs. 32 and 33 of the paper.
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